Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Commun Biol ; 7(1): 547, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714803

Chemogenetic approaches employing ligand-gated ion channels are advantageous regarding manipulation of target neuronal population functions independently of endogenous second messenger pathways. Among them, Ionotropic Receptor (IR)-mediated neuronal activation (IRNA) allows stimulation of mammalian neurons that heterologously express members of the insect chemosensory IR repertoire in response to their cognate ligands. In the original protocol, phenylacetic acid, a ligand of the IR84a/IR8a complex, was locally injected into a brain region due to its low permeability of the blood-brain barrier. To circumvent this invasive injection, we sought to develop a strategy of peripheral administration with a precursor of phenylacetic acid, phenylacetic acid methyl ester, which is efficiently transferred into the brain and converted to the mature ligand by endogenous esterase activities. This strategy was validated by electrophysiological, biochemical, brain-imaging, and behavioral analyses, demonstrating high utility of systemic IRNA technology in the remote activation of target neurons in the brain.


Brain , Neurons , Animals , Neurons/metabolism , Brain/metabolism , Ligands , Mice , Phenylacetates/pharmacology , Phenylacetates/metabolism , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/genetics , Male
2.
J Hazard Mater ; 470: 134183, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574663

Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.

3.
Nat Commun ; 15(1): 3221, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622129

The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.


Intention , Spatial Navigation , Male , Mice , Animals , Space Perception/physiology , Hippocampus/physiology , Entorhinal Cortex , Cues , Spatial Navigation/physiology
4.
J Agric Food Chem ; 72(11): 5955-5965, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38451160

The worldwide prevalence of Aflatoxin B1 (AFB1), which contaminates feedstock and food, is on the rise. AFB1 inhibits testosterone (T) biosynthesis, but the mechanism is not yet clear. By establishing in vivo and in vitro models, this study found the number of Leydig cells (LCs), T content, and the expression of T biosynthesis key enzymes were suppressed after AFB1 treatment. AFB1 exposure also increased reactive oxygen species (ROS) and promoted mitochondrial injury and mitochondrial pathway apoptosis. Moreover, the AMPK signaling pathway was activated, and using an AMPK inhibitor relieved apoptosis and the suppressed T biosynthesis key enzymes of LCs caused by AFB1 through regulating downstream p53 and Nur77. Additionally, adding ROS intervention could inhibit AMPK activation and alleviate the decreased T content caused by AFB1. In summary, AFB1 promotes the apoptosis of LCs and inhibits T biosynthesis key enzyme expression via activating the ROS/AMPK signaling pathway, which eventually leads to T synthesis disorder.


AMP-Activated Protein Kinases , Aflatoxin B1 , Mice , Male , Animals , Reactive Oxygen Species/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Signal Transduction , Testosterone , Apoptosis , Oxidative Stress
5.
Antioxidants (Basel) ; 13(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38539846

Molecular hydrogen, the smallest and lightest molecule, serves as an intense reducing agent. Its distinct characteristics, including minimal size and neutral charge, enhance bioavailability and facilitate significant biological effects. Previously considered physiologically inert, hydrogen has gained recognition as a powerful therapeutic agent, known for its antioxidative and anti-inflammatory properties. Electrolyzed hydrogen water (EHW), enriched with molecular hydrogen, demonstrates remarkable antioxidative capabilities, indicating potential benefits for various diseases. Inflammation-induced reactive oxygen species (ROS) amplify inflammation, leading to secondary oxidative stress and creating a crosstalk between ROS and inflammatory responses. This crosstalk contributes to the pathogenesis and progression of chronic diseases. EHW interrupts this crosstalk, reducing inflammatory cytokines and oxidative stress across various disease models, suggesting therapeutic potential. EHW is also known for its anti-inflammatory effects, extending to pain management, as evidenced in models like sciatic nerve ligation and inflammatory pain. In an inflammatory bowel disease (IBD) model, EHW effectively alleviates abdominal pain, mitigating 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced inflammation and oxidative stress, offering insights for clinical applications. Additionally, hydrogen selectively targets harmful radicals, and EHW intake helps balance stress-induced hormonal dysregulation, potentially easing disorders associated with chronic stress.

6.
Brain Res ; 1822: 148617, 2024 01 01.
Article En | MEDLINE | ID: mdl-37805008

Conditioned taste aversion (CTA) is an essential ability for animals to consume food safely and is regulated by neuromodulatory systems including the dopamine, noradrenaline, serotonin, and acetylcholine systems. However, because few studies focused on a comprehensive understanding of whole-brain activities, how these neuromodulators contribute to the process of CTA remains an open issue. 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) can visualize activated regions within the whole brain simultaneously and noninvasively. This study aimed to understand the mechanisms of CTA, especially focusing on the retrieval process after CTA acquisition by FDG-PET imaging. CTA was established in rats who received an intraoral application of saccharin solution (IOAS) on the first day (Day 1), a LiCl i.p. injection after an IOAS on Day 2, and an IOAS on Day 3 (CTA group). The subtraction images of Day 3 of the SHAM group, which received a 0.9 % NaCl (saline) injection instead of a LiCl on Day 2, from those of Day 3 of the CTA group revealed increases in FDG signals in multiple brain regions including the substantia nigra, ventral tegmental area, locus coeruleus, dorsal raphe, and nucleus basalis magnocellularis, in addition to the hippocampus and nociception-related regions, including the parabrachial nucleus and solitary nucleus. On the other hand, the visceral pain induced by the LiCl injection increased FDG signals in the primary and secondary somatosensory and insular cortices in addition to the parabrachial nucleus and solitary nucleus. These results suggest that the retrieval process of CTA induces brain regions producing neuromodulators and pain-related brainstem.


Fluorodeoxyglucose F18 , Taste , Rats , Animals , Taste/physiology , Lithium Chloride , Avoidance Learning/physiology , Solitary Nucleus , Saccharin/pharmacology , Positron-Emission Tomography , Neurotransmitter Agents
8.
Front Immunol ; 14: 1261256, 2023.
Article En | MEDLINE | ID: mdl-38022622

Introduction: A series of symptoms, including fever, widespread pain, fatigue, and even ageusia, have frequently been reported in the context of various infections, such as COVID-19. Although the pathogenic mechanisms underlying an infection causing fever and pain have been well established, the mechanisms of fatigue induced by infection in specific brain regions remain unclear. Methods: To elucidate whether and how the peripheral infection cause fatigue via regional neuroinflammation, we performed a brain-wide investigation of neuroinflammation in a peripheral pseudoinfection rat model using [18F]DPA-714 positron emission tomography (PET) imaging analysis, in which the polyriboinosinic: polyribocytidylic acid (poly I:C) was intraperitoneally injected. Results: Transient fever lasting for several hours and subsequent suppression of spontaneous activity lasting a few days were induced by poly I:C treatment. Significant increase in plasma interleukin (IL)-1ß, IL-6 and tumour necrosis factor (TNF)-α were observed at 2 and 4 h following poly I:C treatment. PET imaging analysis revealed that the brain uptake of [18F]DPA-714 was significantly increased in several brain regions one day after poly I:C treatment, such as the dorsal raphe (DR), parvicellular part of red nucleus (RPC), A5 and A7 noradrenergic nucleus, compared with the control group. The accumulation of [18F]DPA-714 in the DR, RPC and A5 was positively correlated with subsequent fatigue-like behavior, and that in the A7 tended to positively correlate with fever. Discussion: These findings suggest that peripheral infection may trigger regional neuroinflammation, which may cause specific symptoms such as fatigue. A similar mechanism might be involved in COVID-19.


COVID-19 , Neuroinflammatory Diseases , Rats , Animals , Positron-Emission Tomography/methods , Pain , COVID-19/complications , Poly I
9.
J Med Chem ; 66(20): 14011-14028, 2023 10 26.
Article En | MEDLINE | ID: mdl-37830160

The GPR139 receptor is an orphan G-protein-coupled receptor (GPCR) mainly found in the central nervous system and is a potential therapeutic target for the treatment of schizophrenia and drug addiction. Guided by the reported structure of GPR139, we conducted medicinal chemistry optimizations of TAK-041, the GPR139 agonist in clinical trials. New compounds with three different core structures were designed and synthesized, and their activity at GPR139 was evaluated. Among them, compounds 15a (EC50 = 31.4 nM) and 20a (EC50 = 24.7 nM) showed potent agonist activity at GPR139 and good pharmacokinetic properties. In murine schizophrenia models, both compounds rescued the social interaction deficits observed in BALB/c mice. Compound 20a also alleviated cognitive deficits in mice with a pharmacologically induced model of schizophrenia. These findings further demonstrated the potential of GPR139 agonists in alleviating the negative symptoms and cognitive deficits of schizophrenia. Compound 20a is worth further evaluation as an antischizophrenia drug candidate.


Cognitive Dysfunction , Social Interaction , Mice , Animals , Receptors, G-Protein-Coupled/agonists , Triazines , Cognitive Dysfunction/drug therapy
10.
Food Chem Toxicol ; 176: 113762, 2023 Jun.
Article En | MEDLINE | ID: mdl-37028746

Aluminium (Al) accumulates in the spleen and causes spleen apoptosis. Mitochondrial dyshomeostasis represents primary mechanisms of spleen apoptosis induced by Al. Apoptosis-inducing factor (AIF) is located in the gap of the mitochondrial membrane and can be released into the nucleus, leading to apoptosis. Phosphatase and tensin homolog (PTEN)-induced putative kinase1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy maintains mitochondrial homeostasis by removing damaged mitochondria, but its function in AIF-mediated spleen apoptosis induced by Al is not clear. In our study, aluminium trichloride (AlCl3) was diluted in water for 90 d and administered to 75 male C57BL/6N mice at 0, 44.8, 59.8, 89.7, and 179.3 mg/kg body weight. AlCl3 triggered PINK1/Parkin pathway-mediated mitophagy, induced AIF release and AIF-mediated spleen apoptosis. AlCl3 was administered to sixty male C57BL/6N mice of wild type and Parkin knockout for 90 d at 0 and 179.3 mg/kg body weight. The results indicated that Parkin deficiency decreased mitophagy, aggravated mitochondrial damage, AIF release and AIF-mediated spleen apoptosis induced by AlCl3. According to our results, PINK1/Parkin-mediated mitophagy and AIF-mediated spleen apoptosis are caused by AlCl3, whereas mitophagy is protective in AIF-mediated apoptosis induced by AlCl3.


Apoptosis Inducing Factor , Mitophagy , Animals , Male , Mice , Apoptosis , Body Weight , Mice, Inbred C57BL , Protein Kinases/genetics , Protein Kinases/metabolism , Spleen/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Aluminum Chloride
11.
Ecotoxicol Environ Saf ; 256: 114846, 2023 May.
Article En | MEDLINE | ID: mdl-37018856

Aflatoxin B1 (AFB1) is an extremely hazardous and unavoidable pollutant for cereals and feedstuff. AFB1 can cause testicular lesion, and how to alleviate its testicular toxicity has received much attention in recent years. Lycopene (LYC), a foodborne nutrient derived from red fruits and vegetables, has protective effects against sperm abnormality and testicular lesions. To confirm the beneficial effects and mechanisms of LYC on AFB1-induced testicular lesion, 48 male mice were exposed to 0.75 mg/kg AFB1 or/and 5 mg/kg LYC for consecutive 30 days. Results demonstrated the LYC significantly restored the lesions of testicular microstructure and ultrastructure, and sperm abnormalities in AFB1-exposed mice. Furthermore, LYC effectively attenuated AFB1-induced oxidative stress and mitochondrial damage, including ameliorative mitochondrial structural, and elevated mitochondrial biogenesis for maintaining mitochondrial function. Meanwhile, LYC resisted AFB1-induced mitochondrial-dependent apoptosis. In addition, LYC promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and upregulated the Nrf2 signaling pathway. Collectively, our findings demonstrate LYC ameliorates AFB1-induced testicular lesion by attenuating oxidative stress and mitochondrial damage, which is related to the activation of Nrf2.


Aflatoxin B1 , NF-E2-Related Factor 2 , Male , Animals , Mice , Lycopene/metabolism , Lycopene/pharmacology , Aflatoxin B1/toxicity , NF-E2-Related Factor 2/metabolism , Seeds/metabolism , Oxidative Stress
12.
Foods ; 12(5)2023 Feb 27.
Article En | MEDLINE | ID: mdl-36900523

Aflatoxin B1 (AFB1) is a serious pollutant in feed and food which causes liver inflammation, fibrosis, and even cirrhosis. The Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 3 (STAT3) signaling pathway is widely involved in inflammatory response and promotes the activation of nod-like receptor protein 3 (NLRP3) inflammasome, thus leading to pyroptosis and fibrosis. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties. However, whether AFB1 exposure leads to the activation of the JAK2/NLRP3 signaling pathway in the liver and whether curcumin can regulate this pathway to influence pyroptosis and fibrosis in the liver remains unclear. In order to clarify these problems, we first treated ducklings with 0, 30, or 60 µg/kg AFB1 for 21 days. We found that AFB1 exposure caused growth inhibition, liver structural and functional damage, and activated JAK2/NLRP3-mediated liver pyroptosis and fibrosis in ducks. Secondly, ducklings were divided into a control group, 60 µg/kg AFB1 group, and 60 µg/kg AFB1 + 500 mg/kg curcumin group. We found that curcumin significantly inhibited the activation of the JAK2/STAT3 pathway and NLRP3 inflammasome, as well as the occurrence of pyroptosis and fibrosis in AFB1-exposed duck livers. These results suggested that curcumin alleviated AFB1-induced liver pyroptosis and fibrosis by regulating the JAK2/NLRP3 signaling pathway in ducks. Curcumin is a potential agent for preventing and treating liver toxicity of AFB1.

13.
Food Chem Toxicol ; 175: 113741, 2023 May.
Article En | MEDLINE | ID: mdl-36958386

Di-n-butyl phthalate (DBP) causes adverse effects on male reproduction, especially testosterone synthesis inhibition. However, the specific mechanism of DBP-induced testosterone synthesis inhibition and its effective intervention measures of prevention and treatment are scarce presently. Lycopene (LYC) plays beneficial roles in male infertility because of its antioxidant activity. Nevertheless, it is unclear whether LYC could prevent DBP-induced male reproductive toxicity. By in vitro and in vivo investigations, this study demonstrated that DBP activated ROS/JAK2/STAT3 signaling pathway, promoted mitophagy and apoptosis, which in turn inhibited testosterone synthesis. Additionally, another major finding was that LYC supplement could reverse the above change, presenting as the restraint of ROS/JAK2/STAT3 signaling pathway, reduction of mitophagy and apoptosis, and improvement of testosterone synthesis. Our study facilitates deeper understandings of the mechanism in DBP-induced testosterone synthesis inhibition, and identifies LYC as the effective prevention and control strategies for DBP poisoning.


Dibutyl Phthalate , Testis , Male , Humans , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/metabolism , Lycopene/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction , Testosterone/metabolism
14.
RSC Med Chem ; 13(10): 1197-1204, 2022 Oct 19.
Article En | MEDLINE | ID: mdl-36325399

Transient receptor potential cation channel subfamily V member 1 (TRPV1)-targeted compounds were synthesized by modifying the structure of SB366791, a pharmaceutically representative TRPV1 antagonist. To avoid amide-iminol tautomerization, structurally supported N-methylated amides (i.e., 3-alkoxy-substitued N-meythylamide derivatives of SB366791) were evaluated using a Ca2+ influx assay, in which cells expressed recombinant TRPV1 in the presence of 1.0 µM capsaicin. The antagonistic activities of N-(3-methoxyphenyl)-N-methyl-4-chlorocinnamamide (2) (RLC-TV1004) and N-{3-(3-fluoropropoxy)phenyl}-N-methyl-4-chlorocinnamamide (4) (RLC-TV1006) were found to be approximately three-fold higher (IC50: 1.3 µM and 1.1 µM, respectively) than that of SB366791 (IC50: 3.7 µM). These results will help reinvigorate the potential of SB366791 in medicinal chemistry applications. The 3-methoxy and 3-fluoroalkoxy substituents were used to obtain radioactive [11C]methoxy- or [18F]fluoroalkoxy-incorporated tracers for in vivo positron emission tomography (PET). Using the 11C- or 18F-labeled derivatives, explorative PET imaging trials were performed in rats.

15.
Nutrients ; 14(21)2022 Oct 22.
Article En | MEDLINE | ID: mdl-36364715

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the digestive tract and is typically accompanied by characteristic symptoms, such as abdominal pain, diarrhea, and bloody stool, severely deteriorating the quality of the patient's life. Electrolyzed hydrogen water (EHW) has been shown to alleviate inflammation in several diseases, such as renal disease and polymyositis/dermatomyositis. To investigate whether and how daily EHW consumption alleviates abdominal pain, the most common symptom of IBD, we examined the antioxidative and anti-inflammatory effects of EHW in an IBD rat model, wherein colonic inflammation was induced by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). We found that EHW significantly alleviated TNBS-induced abdominal pain and tissue inflammation. Moreover, the production of proinflammatory cytokines in inflamed colon tissue was also decreased significantly. Meanwhile, the overproduction of reactive oxygen species (ROS), which is intricately involved in intestinal inflammation, was significantly suppressed by EHW. Additionally, expression of S100A9, an inflammatory biomarker of IBD, was significantly suppressed by EHW. These results suggest that the EHW prevented the overproduction of ROS due to its powerful free-radical scavenging ability and blocked the crosstalk between oxidative stress and inflammation, thereby suppressing colonic inflammation and alleviating abdominal pain.


Colitis , Inflammatory Bowel Diseases , Rats , Animals , Reactive Oxygen Species/metabolism , Hydrogen/pharmacology , Hydrogen/metabolism , Water/metabolism , Inflammatory Bowel Diseases/metabolism , Colon/metabolism , Trinitrobenzenesulfonic Acid/toxicity , Inflammation/metabolism , Abdominal Pain/etiology , Colitis/chemically induced , Colitis/metabolism
16.
J Agric Food Chem ; 70(43): 14043-14051, 2022 Nov 02.
Article En | MEDLINE | ID: mdl-36260425

T-2 toxin treatment causes male reproduction system dysfunction, although the exact mechanism remains unclear. In this research, male Kunming mice and TM4 cells were treated with varying concentrations of the T-2 toxin for evaluating the adverse effect of T-2 toxin on male reproductive function. MCC950 or NAC was used to block NLRP3 inflammasome activation and eliminate reactive oxygen species (ROS) accumulation in the TM4 cell, respectively. The results showed that: (1) T-2 toxin caused testicular atrophy, destroyed the microstructure and ultrastructure of the testis, and caused sperm deformities; (2) T-2 toxin increased the content and gene expressions of TNF-α and IL-6 and decreased the IL-10 content and gene expression, causing testis and TM4 cell inflammatory injury; (3) T-2 toxin activated NLRP3 inflammasome in the testis and TM4 cells and caused ROS accumulation in the testis; (4) suppressing NLRP3 inflammasome activation using 20 nM MCC950 alleviated the TM4 cell inflammatory damage caused via the T-2 toxin; nevertheless, 20 nM MCC950 did not reduce ROS accumulation in TM4 cells; and (5) NAC relieved the inflammatory damage in TM4 cells by inhibiting NLRP3 inflammasome activation. Taken together, T-2 toxin caused testicular inflammation injury through ROS-mediated NLRP3 inflammasome activation, resulting in male reproductive dysfunction.


Inflammasomes , T-2 Toxin , Mice , Male , Animals , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reactive Oxygen Species/metabolism , Semen/metabolism , Inflammation
17.
J Agric Food Chem ; 70(42): 13765-13777, 2022 Oct 26.
Article En | MEDLINE | ID: mdl-36239691

T-2 toxin causes kidney fibrosis. Wnt/ß-catenin signaling promotes kidney fibrosis when sustained and activated. However, whether T-2-induced kidney fibrosis involves Wnt/ß-catenin signaling activation has not been explored yet. T-2 toxin causes renal mitochondrial damage, leading to mitochondrial reactive oxygen species (mtROS) overproduction and NLRP3-inflammasome activation. The activated NLRP3-inflammasome can mediate fibrosis. However, whether the NLRP3-inflammasome can be mediated by mtROS and further regulate T-2-induced kidney fibrosis through Wnt/ß-catenin signaling is unclear. In this study, first, we confirmed that T-2 toxin caused Wnt/ß-catenin signaling activation in mice kidneys and HK-2 cells. Second, we confirmed that mtROS activated the NLRP3-inflammasome in T-2-exposed mice kidneys and HK-2 cells. Third, we confirmed that the NLRP3-inflammasome regulated the Wnt/ß-catenin signaling in T-2 toxin-exposed mice kidneys and HK-2 cells. Finally, we confirmed that Wnt/ß-catenin signaling regulated fibrosis in T-2 toxin-exposed mice kidneys and HK-2 cells. The above results confirm that T-2 toxin induces kidney fibrosis via the mtROS-NLRP3-Wnt/ß-catenin axis.


Kidney Diseases , T-2 Toxin , Animals , Mice , beta Catenin/genetics , Fibrosis , Inflammasomes , Kidney/pathology , Kidney Diseases/chemically induced , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reactive Oxygen Species , T-2 Toxin/toxicity , Wnt Proteins/metabolism
18.
Environ Toxicol ; 37(10): 2341-2353, 2022 Oct.
Article En | MEDLINE | ID: mdl-35716031

Dibutyl phthalate (DBP) is a plasticizer widely used in daily production, which causes serious environmental pollution, and damage to brain, liver, kidney, and lung by producing excessive reactive oxygen species (ROS) after entering the body. DBP can also cause skeletal dysplasia, but it is unclear whether ROS is involved. In addition, overproduction of ROS can activate mitophagy, which is an important mechanism for regulating mitochondrial quality and cell homeostasis. In order to investigate whether DBP can damage MC3T3-E1 cells (osteoblast cell line) and whether ROS and mitophagy are involved, DBP toxicity experiment, Parkin gene silencing experiment, and N-acetylcysteine (NAC) intervention experiment were performed on MC3T3-E1 cells in turn. First, we found that DBP caused MC3T3-E1 cell viability decline and osteogenic dysfunction, accompanied by the overproduction of ROS and the activation of mitophagy. Then, we found that silencing Parkin expression alleviated DBP-induced apoptosis and osteogenic dysfunction of MC3T3-E1 cells. In addition, NAC treatment inhibited the PINK1/Parkin-mediated mitophagy and alleviated the apoptosis and osteogenic dysfunction of MC3T3-E1 cells caused by DBP. Our research results showed that DBP could cause MC3T3-E1 cell damage by increasing ROS to promote the PINK1/Parkin-mediated mitophagy.


Dibutyl Phthalate , Mitophagy , Acetylcysteine/pharmacology , Dibutyl Phthalate/toxicity , Mitophagy/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Eur J Neurosci ; 56(3): 4224-4233, 2022 08.
Article En | MEDLINE | ID: mdl-35666711

The intermittent cold stress-induced generalized pain response mimics the pathophysiological and pharmacotherapeutic features reported for fibromyalgia patients, including the presence of chronic generalized pain and female dominance. In addition, the intermittent cold stress-induced generalized pain is abolished in lysophosphatidic acid receptor type-1 knockout mice, as reported in many cases of neuropathic pain models. This study aimed to identify the brain loci involved in the intermittent cold stress generalized pain response and test their dependence on the lysophosphatidic acid receptor type-1. Positron emission tomography analyses using 2-deoxy-2-[18 F]fluoro-d-glucose in the presence of a pain stimulus showed that intermittent cold stress causes a significant increase in uptake in the ipsilateral regions, including the salience networking-related anterior cingulate cortex and insular cortex and the cognition-related hippocampus. A significant decrease was observed in the default mode network-related posterior cingulate cortex. Almost these intermittent cold stress-induced changes were abolished in lysophosphatidic acid receptor type-1 knockout mice. There results suggest that the intermittent cold stress-induced generalized pain response is mediated by the lysophosphatidic acid receptor type-1 in specific brain loci related to salience networking and cognition, which may lead to further developments in the treatment of fibromyalgia.


Fibromyalgia , Receptors, Lysophosphatidic Acid , Animals , Brain/diagnostic imaging , Brain/metabolism , Chronic Pain , Disease Models, Animal , Female , Fibromyalgia/diagnostic imaging , Fibromyalgia/genetics , Fibromyalgia/metabolism , Mice , Mice, Knockout , Positron-Emission Tomography , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/therapeutic use , X-Ray Microtomography
20.
Food Chem Toxicol ; 165: 113126, 2022 Jul.
Article En | MEDLINE | ID: mdl-35569598

Aluminum (Al) is a food pollutant that has extensive deleterious effects on the liver. Our previous research proposed that E3 ubiquitin ligase PARK2 knockout (Parkin-/-) could aggravate Al-induced liver damage by inhibiting mitophagy, during which the reactive oxygen species (ROS) content increases. Inhibition of mitophagy can activate inflammasome. But the link between Parkin-mediated mitophagy and liver inflammatory injury caused by Al, and the role of ROS in it remain unclear. In this study, we applied Al, Parkin-/- and N-acetyl-L-cysteine (NAC) to act on C57BL/6N mice to investigate them. We found that Al could induce liver inflammatory injury and Parkin-/- could aggravate it. Meanwhile, inhibition of ROS alleviated oxidative stress, mitochondrial damage, mitophagy and inflammatory injury caused by Al in Parkin-/- mice liver. These results indicated that ROS antagonized the protection of Parkin-mediated mitophagy against Al-induced liver inflammatory damage in mice.


Aluminum , Mitophagy , Aluminum/toxicity , Animals , Liver , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/pharmacology , Ubiquitin-Protein Ligases/genetics
...